
PBFVMC: A New Pseudo-Boolean Formulation to

Virtual-Machine Consolidation

Bruno César Ribas∗‡, Rubens Massayuki Suguimoto†, Razer A. N. R. Montaño∗, Fabiano Silva∗ and Marcos Castilho∗

∗ LIAMF/UFPR - Laboratório de Inteligência Artificial e Métodos Formais
†LARSIS/UFPR - Laboratório de Redes e Sistemas Distribuı́dos

UFPR - Federal University of Paraná
‡ UTFPR - Federal University of Technology

Email: {ribas,rubensm,razer,fabiano,marcos}@inf.ufpr.br

Abstract—Over the course of the last decade, there have been
several improvements in the performance of Boolean Satisfia-
bility (SAT), Integer Linear Programming (ILP) and Pseudo-
Boolean Optimization (PBO) solvers. These improvements have
encouraged the applications of SAT, ILP and PBO techniques
in modeling complex engineering problems. One such problem
is the Virtual Machine Consolidation. The Virtual Machine Con-
solidation problem consists in placing a set of virtual machines
in a set of hardware in a way to increase workload on hard-
ware where they can operate more energy-efficient. This paper
proposes an improved PBO formulation of the Virtual Machine
Consolidation problem, PBFVMC. The improved formulation
and enhancements are built on top of a previous work and a
new set of constraints is created and rationalized to work more
friendly with current PBO solvers. It is observed that this new
formulation goes a step ahead and more problems can now be
solved.

I. INTRODUCTION

Over the last decade, Boolean Satisfiability (SAT) and
Integer Linear Programming (ILP) solvers have improved
significantly through the introduction of new intelligent algo-
rithms that allowed the solvers to handle a wider ranger of
challenging and real-world problems.

Within these advances it has come an interest to apply real-
world problems to generic SAT,PBO and ILP solvers. One such
problem is the Virtual Machine Consolidation (VMC) problem
in a Cloud Computing infraestructure.

Cloud Computing is a recent paradigm of distributed com-
puting that offers virtualized resources and services over the
Internet [1], [2]. Using Cloud Computing is possible to offer
a pool of easily usable and accessible virtualized resources.
These resources can be dynamically reconfigured to adjust to
a variable load (scale), allowing also for an optimum resource
utilization. This pool of resources is typically exploited by
a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs [3].

One of the service models offered by Clouds is Infra-
structure-as-a-Service (IaaS) in which virtualized resources are
provided as virtual machine (VM). With VMs, users obtain
a personalized and isolated execution environment to execute
applications. A VM also uses virtualized resources such virtual
CPU, virtual RAM, virtual network and virtual storage devices.

Many Cloud providers use a large data center with a huge
amount of physical resources (server, disks, wired networks)
to offer IaaS. Unfortunately, most of large data center usage
ranges from 5% to 10% of capacity on average. In order
to maximize the resources utilization a IaaS Cloud provider
can apply server consolidation technique [4], [5], [6]. Server
consolidation is a technique to reallocate VMs, distributed on
many physical servers, on less amount of physical servers.
Usually physical servers have capacity to run many VMs at
the same time.

A server consolidation can increase workloads on servers
from 50% to 85% where they can operate more energy
efficiently [7] and, in some cases, a consolidation can save
75% of energy [8]. Reallocating virtualized resources allow to
shutdown physical servers, reducing cooling costs, headcount,
hardware management and energy consumption costs.

To maximize Cloud data center usage, an optimal VM
consolidation has been topic of research in Cloud Computing.
There are several works [4], [5], [6], [9], [10] that pursues an
optimal resource utilization. In addition to these approaches
this paper revisits a previous work [10] that models Virtual
Machine consolidation to Pseudo-Boolean constraints and re-
work all the constraints in order to create a better formula
that will take into consideration the limitation of available
Pseudo-Boolean solvers and generate a more friendly formula
to achieve better results.

We perform our experiments using data from the Google
Cluster project which is a trace of real-life scenario. The results
show that is possible to decrease the amount of variables in
50% and it is possible to execute huge sets of VM instances.

This paper is organized as follows. In section II, we present
background information on SAT and PBO and related work.
Section III revisits our previous work and is followed by
section IV where we discuss the modifications and additions
made to achieve a better formulation. In section V we evaluate
the proposed approach using data from real scenario. Finally,
in section VI we present conclusion and future work.

II. BACKGROUND

A. Pseudo-Boolean Optimization

Pseudo-Boolean Optimization involves minimizing or max-
imizing a function subject to certain constraints where the



optimal function and constraints are in Pseudo-Boolean con-
straints.

A Pseudo-Boolean function in a straightforward definition
is a function that maps Boolean values to a real number.
The term pseudo-Boolean is given to these functions that
are not Boolean but remain very close to Boolean func-
tions [11], [12], [13]. In a Pseudo-Boolean (PB) formula,
variables have Boolean domains and constraints, known as
PB constraints [13], are linear inequalities with integral co-
efficients. In PB Optimization, a cost function is added to a
PB formula.

PB functions are a very rich subject of study since numer-
ous problems can be expressed as the problem of optimizing
the value of a PB function. PB constraints offer a more expres-
sive and natural way to express constraints than clauses and
yet, this formalism remains close enough to the Satisfiability
(SAT) [11], [12] problem to benefit from the recent advances
in SAT solving.

Simultaneously, PB solvers benefit from the huge ex-
perience in Integer Linear Programming (ILP) and, more
specifically, 0-1 programming. This is particularly true when
optimization problems are considered. Inference rules allow
to solve problems polynomially when encoded with PB con-
straints while resolution of the problem encoded with clauses
requires an exponential number of steps. PB constraints appear
as a compromise between the expressive power of the formal-
ism used to represent a problem and the difficulty to solve the
problem in that formalism [13].

A detailed description of modern SAT solver, maximum
satisfiability and Pseudo-Boolean optimization can be found,
respectively in [11], [12], [13].

B. Related work

Advances in virtualization technology allowed migration of
VMs or entire virtual execution environment across physical
resources. It also allowed a VM consolidation which has
been investigated with different aspects [14], [8], [15] such
performance of VM, energy consumption, costs of resource
and costs of migration.

Optimal VM consolidation has been explored and solved
using Linear Programming formulation [6], [9] and Distributed
Algorithms [4] approaches.

Ferreto et. al. [6] presents a Linear Programming formu-
lation and add constraints to control VM migration on VM
consolidation process. The migration control constraints use
CPU and memory to avoid worst performance when migration
occurs.

Binary Integer Program (BIP) Bossche et. al. [9] propose
and analyze a Binary Integer Programming (BIP) formula-
tion of cost-optimal computation to schedule VMs in Hydrid
Clouds. The formulation uses CPU and memory constraints
and the optimization is solved by Linear Programming.

III. EXISTING PB FORMULATION OF THE

CONSOLIDATION PROBLEM

The goal of our problem is to deploy K VMs
{vm1 . . . vmK} inside N hardware {hw1 . . . hwN} while

minimizing the total number of active hardware. Each VM
vmi has an associated need such as number of VCPU and
amount of VRAM needed while each physical hardware hwj

has an amount of available resources, number of CPU and
available RAM.

In our previous work[10] it was proposed a formulation of
the consolidation problem using PB constraints to take advan-
tage of the advances of the PB solvers and many techniques
that were aggregated to PB solvers from SAT solvers and, to
the best of our knowledge, it is the only contribution to this
problem using a formulation that is dispatched to a PB solver.

This formulation has 6 types of constraints which led to
(2×N+2×N×K) variables and (2+2×N+K) constraints,
where N and K represents the number of available hardware
and virtual machines, respectively. This formulation is quite
compact but on the other hand is very hard to a PB solver
since the biggest formula that we could prove satisfiable in a
14400 seconds of time limit was a formula with 128 hardware
and 1277 virtual machines and the best optimal proved was a
formula with only 32 hardware and 98 virtual machines.

The formulation of our previous work is provided below:

In order to create the PB Constraints each hardware con-
sists of two variables, one that relates hwi to the amount of
RAM hwr

i and one that relates to the amount of CPU hw
p
i .

Per hardware, a VM has 2 variables, one to relate the VM vmj

required amount of VRAM vmr
j to the hardware hwi amount

of RAM hwr
i , denoted as vmr·hwi

j . The another variable relate

the required VCPU vm
p
j to the amount of CPU available hw

p
i ,

denoted as vm
p·hwi

j . The total amount of VM variables is 2×N
variables.

A hardware is considered ON when its hwr
i and hw

p
i are

True, otherwise it is OFF.

minimize :

N
∑

i=1

hwi (1)

N
∑

i=1

Rhwi
· hwr

i ≥

K
∑

j=1

Rvmj
(2)

N
∑

i=1

Phwi
· hwp

i ≥

K
∑

j=1

Pvmj
(3)

∀ i ∈ 1..N

(

K
∑

j=1

Rvmj
· vmr·hwi

j ≤ Rhwi

)

(4)

∀ i ∈ 1..N

(

K
∑

j=1

Pvmj
· vmp·hwi

j ≤ Phwi

)

(5)

∀j ∈ 1..K

(

N
∑

i=1

vm
p·hwi

j · vmr·hwi

j · hwp
i · hw

r
i = 1

)

(6)

The objective function is the summation of the ON servers.
Constraints (2) and (3) guarantee the the necessary amount



of ON resources are enough to power all the VMs. To limit
the upper bound of hardwares, constraints (4) and (5) are the
upper limit of the resources each hardware can provide. Finally
constraint (6) guarantees that the VM is running in exactly one
hardware. Due to the non-linear nature of this constraint, it is
implicitly defined that if a VM is running on a hardware, this
hardware must be ON.

As noted at the beginning of this section, this formulation
is very compact and it is possible to achieve this succinctness
because it is a non-linear formula where constraint 6 has a
sum of four multiplication.

IV. PROPOSED PB FORMULATION

This paper proposes a PB formulation that modifies the
previous formulation in the past section to new set where it
can be more comparable to a Pigeon Hole formulation than to a
Bin Packing formulation. This model improves on weaknesses
present in previous PB Formulation [10]. From now we will
refer this new formulation as PBFVMC.

Previous formulation were more comparable to a Bin Pack-
ing problem, specially on the constraint (6). The PBFVMC
acts more like a Pigeon Hole formulation, with a special
hole (hardware) that can handle more than one pigeon (virtual
machines) limited to the amount of resource available (RAM
and CPU) in each hole (hardware).

A. Proposed Base Model

Most of the structure defined in [10] and recalled in
section III, are kept. All the pseudo-boolean variables that were
associated to the RAM (and VRAM) and CPU (and VCPU),
before named, hwr

i (and vmr
j ) and hw

p
i (and vm

p
j ) are now

merged as hwi for hardware and vmj for virtual machines.

That said, our new formulation contains the following
variables:

- N : Total number of available hardware (hw);
- K : Total number of virtual machines (VM);
- hwi : Hardware i ∈ N ;
- vmhwi

j : Virtual Machine j ∈ K that runs in hwi;

A hardware is considered ON when hwi is True, otherwise
it is OFF.

Although there is no separation between the pseudo-
boolean variable that is related to the amount of RAM and
processing power each VM has one variable that relates it to
a running hardware. That said this new formulation contains
(N +N ×K) variables.

Our constraints are defined as follows:

minimize :

N
∑

i=1

hwi (7)

N
∑

i=1

Rhwi
· hwi ≥

K
∑

j=1

Rvmj
(8)

N
∑

i=1

Phwi
· hwi ≥

K
∑

j=1

Pvmj
(9)

∀i ∈ 1..N

(

K
∑

j=1

(Rvmj
· ¬vmhwi

j ) +Rhwi
· hwi ≥

K
∑

j=1

Rvmj

)

(10)

∀i ∈ 1..N

(

K
∑

j=1

(Pvmj
· ¬vmhwi

j ) + Phwi
· hwi ≥

K
∑

j=1

Pvmj

)

(11)

∀ j ∈ 1..K

(

N
∑

i=1

vmhwi

j ≥ 1

)

(12)

∀ j ∈ 1..K

(

N
∑

i=1

¬vmhwi

j ≥ N − 1

)

(13)

The objective function is the summation of the ON servers.
Inequalities constraints (8) and (9) guarantees that the sum-
mation of memory and processing power of the powered ON
servers fit the needs to power all virtual machines. Constraints
(10) and (11) are the upper limit on the total resources each
hardware may provide in relation to the virtual machines that
may run on this hardware. Constraint (12) states that a virtual
machine must be running in some hardware. Constraint (13)
ensures that the virtual machine is running in exactly one
hardware.

This new formulation generates (2 + 2 × N + 2 × K)
constraints and (N+N×K) variables which has only K more
constraints than previous formulation and half of the variables.

B. Discussion on new formulation

The proposed formulation is an improvement from previous
as the amount of variables were cut in half and this is good for
the solver since the search space is smaller now, and the most
important difference is that we no longer maintain non-linear
constraints.

Non-linear constraints, as seen in constraint (6) are very
hard to solve and most, if no all, solvers translate non-linear
constraints into an equivalent linear instance. This is easily
done, as seen on [13], but many methods introduce a significant
number of auxiliary variables, increasing the search space
causing a direct impact on the running time, specially when
running against formulas with higher N and K values.

Constraints (10) and (11) are just an algebraic manipulation
of constraints (4) and (11), reworked in a way to include the
variables hwi on the left side of the constraint to dictate that
the hwi must be on if some of the vmhwi

j are running on
this server, after that the constraints are normalized in a way
that all coefficients are non-negative and the relational operator
becomes ≥.

Constraints (12) and (13) represents the constraint (6)
resembling a CNF-Pigeon Hole formulation instead of a
Bin Packing formulation. While Bin Packing formulation are
strictly written in a summation that equals one as constraint
(6), a Pigeon Hole formulation, on the other side, is easily done
with clauses leading to (n+1) clauses, where n is the number
of holes, saying that a pigeon has to be placed in some hole as



shown in (14), and then for each hole we have a set of clauses
ensuring that only one single pigeon is placed into that hole,
and it is defined as constraint (15). The problem on using this
formulation is that the number of clauses increases rapidly as
the number of pigeons grow, and this is more critical within
our problem as we may have thousands of virtual machines in
hundreds of hardware, and this notation becomes really hard
to use. In order to reduce the size we strength the formula
by the strengthening preprocess where these clauses will be
rewritten in one PB constraint.

∀ j ∈ 1..K

(

N
∑

i=1

vmhwi

j ≥ 1

)

(14)

∀ j, i, k ∈ 1..K, 1..N, i+ 1..K (¬vmhwi

j + ¬vmhwi

k ) ≥ 1
(15)

1) Strengthening Formula: Dixon [16], [17], [18], rescues
the discussion on taking advantage of advances in operations
research techniques to preprocess formulas, in special it dis-
cussed how strengthening can be applied to pseudo-boolean
constraints directly.

Strengthening is a method where a literal, or a set of literals
are fixed a value and then a propagation is applied to the
formula. Some assumptions will cause some constraints to
become oversatisfied, i.e. suppose that after setting a literal, l0
to true, we discover that a constraint c is given by

∑

wili ≥ r
becomes oversatisfied by an amount s in that the sum of the
left hand side is greater (by s) than the amount required bu the
right hand side of the inequality. The oversatisfied constraint
c can now be replaced by the following:

s · ¬l0 +
∑

wili ≥ r + s (16)

As proved in [16], if l0 is true, we know that
∑

wili ≥
r + s, so (16) holds. If l0 is false, then s · ¬l0 = s and we
still must satisfy the original constraint

∑

wili ≥ r, so (16)
still holds. The new constraint implies the original one, so
no information is lost in the replacement. The power of this
method is that it allows us to build more complex axioms from
a set of simple ones. The strengthened constraint will often
subsume some or all of the constraints involved in generating
it.

In the case of a pigeon hole formulation, constraint (15)
will be strengthened and will subsume all constraints (15),
which will be replaced by constraint (13), generating a smaller
and richer set of constraints, taking advantage of all the
power pseudo-boolean provides and yet keeping with linear
and normalized constraints.

V. EXPERIMENTS

For the implementation and evaluation of the PB Con-
straints, we wrote a simple program that reads the amount of
physical hardware followed by its amount of RAM and CPU,
the amount of VM and its requirements of virtual memory
(VRAM) and virtual processing power (VCPU), and solved the
formula using open source PB solver/optimizer Sat4j-PB [19],
SCIP [20] and BSOLO [21].

Our experiments were executed on a Intel Xeon 2.1GHz
with 256GB of memory and our PB consolidation formulation
is applied against the Google Cluster Data Project workloads.

We also used a subset of workloads to see the progress
on the use of different amount of VM or tasks. A subset of
workload is the larger subset of VMs or tasks which sum
of VCPU or VRAM requirements does not exceed σ percent
of sum of physical servers CPU or RAM capacities. In this
experiment we assume σ equals to 25%, 50%, 75%, 85%,
90%, 95%, 98%, and 99%. Although we ran all tests with
various solvers, only the results of the SAT4J-PB are shown
since this solver was the one that had the best performance
overall the formulas.

A. Google Cluster Data Project

Google Cluster Data 1 is a Google project to intend for
the distribution of data about workloads running on Google
Cluster. The workloads contain data traces about 12k hard-
ware describing events and resource capacity of each server.
The traces also describes around 132k tasks workloads with
respective resource requirements.

Due to the time constraints we selected five subsets of
hardware. The sizes of each subset are 32, 64, 128, 256, 512
hardware. For each size of subset hardware, we used the before
subset of workload to perform experiments. Table I shows
the amount of hardware, virtual hardware and the size of the
formulas in the previous formulation and PBFVMC.

As a result, table II shows time results for the set of
formulas explained above. For each instance a time limit of
14400 seconds was given. When the solver runs out of time
limit and does not find any solution it is show a Time Limit
Exceeded (TLE), formulas that timed out in both formulations
are omitted. When the solver proved optimum result it is shown
in bold the time of the optimum time with the value of the
objective function. When the solver could find an satisfiable
assignment but could not prove optimum result it is show in
normal font the time that the best solution was found and the
best value of the objective function. Table III shows the time
spent by the solver to find a satisfiable assignment.

Running these experiments over the new proposed formula-
tion can be noticed a great break through, while with previous
formulation couldn’t solve most of the formulas with 128
hardware and just half of the formulas with 64 hardware, on
top the new formulation most of the formulas with 32 hardware
could be proven optimum in less than 1000s and most of the
formulas up to 512 hardware could be proven SATISFIABLE,
which are 4 times bigger than the bigger formula solved with
the previous formulation. Also table III shows that most of
the formulas could be proven satisfiable in under 200s. This
represents that the solver used most of the time is to optimize
the formula, while in the previous formulation most formulas
could not be proven satisfiable.

VI. CONCLUSION

This paper presented an enhanced VM consolidation model
using an artificial intelligence based on Pseudo-Boolean (PB)

1http://code.google.com/p/googleclusterdata/



TABLE I: Comparison of the size of the formulas from the previous and PBFVMC formulation to the problem. Table shows
workloads of 25%, 50%, 75%, 85%, 90%, 95%, 98% and 99% for the subsets of 32, 64, 128, 256 and 512 hardware.

Previous PBFVMC

HW VMS Vars Constr Vars Constr

hw32-vm25p 98 6336 164 3168 262

hw32-vm50p 173 11136 239 5568 412

hw32-vm75p 278 17856 344 8928 622

hw32-vm85p 320 20544 386 10272 706

hw32-vm90p 325 20864 391 10432 716

hw32-vm95p 348 22336 414 11168 762

hw32-vm98p 364 23360 430 11680 794

hw32-vm99p 366 23488 432 11744 798

hw64-vm25p 174 22400 304 11200 478

hw64-vm50p 371 47616 501 23808 872

hw64-vm75p 559 71680 689 35840 1248

hw64-vm85p 629 80640 759 40320 1388

hw64-vm90p 665 85248 795 42624 1460

hw64-vm95p 707 90624 837 45312 1544

hw64-vm98p 712 91264 842 45632 1554

hw64-vm99p 713 91392 843 45696 1556

Previous PBFVMC

HW VMS Vars Constr Vars Constr

hw128-vm25p 368 94464 626 47232 994

hw128-vm50p 713 182784 971 91392 1684

hw128-vm75p 1048 268544 1306 134272 2354

hw128-vm85p 1155 295936 1413 147968 2568

hw128-vm90p 1277 327168 1535 163584 2812

hw128-vm95p 1321 338432 1579 169216 2900

hw128-vm98p 1368 350464 1626 175232 2994

hw128-vm99p 1410 361216 1668 180608 3078

hw256-vm25p 712 365056 1226 182528 1938

hw256-vm50p 1407 720896 1921 360448 3328

hw256-vm75p 2119 1085440 2633 542720 4752

hw256-vm85p 2372 1214976 2886 607488 5258

hw256-vm90p 2480 1270272 2994 635136 5474

hw256-vm95p 2583 1323008 3097 661504 5680

hw256-vm98p 2619 1341440 3133 670720 5752

hw256-vm99p 2678 1371648 3192 685824 5870

Previous PBFVMC

HW VMS Vars Constr Vars Constr

hw512-vm25p 1432 1467392 2458 733696 3890

hw512-vm50p 2771 2838528 3797 1419264 6568

hw512-vm75p 4035 4132864 5061 2066432 9096

hw512-vm85p 4431 4538368 5457 2269184 9888

hw512-vm90p 4745 4859904 5771 2429952 10516

hw512-vm95p 5068 5190656 6094 2595328 11162

hw512-vm98p 5319 5447680 6345 2723840 11664

hw512-vm99p 5402 5532672 6428 2766336 11830

Constraints. Formulas are solved by a generic PB solver,
avoiding the need to write specific algorithms. The use of
a generic PB solver benefits our approach as improvements
in PB solving are incorporated in the solvers, these formulas
automatically becomes easier to solve.

Results described in this paper shows a break through in the
generated formulas, follow experimental results, by removing
equal constraints, non-linear constraints and cutting in half
the number of variables we can identify an increase of 4
times in the size of the hardware and virtual machines coded
in the formulas being solved and 7 time bigger in terms of
PB constraints. Also experiments shows that with PBFVMC
solvers spend most the running time dedicated to optimize the
formula while in the previous formulation most of the time are
spent trying to decide whether the formula is satisfiable.

Although optimum could not be proved for bigger formulas
a work on the formulation will continue to achieve formulas
that are easier to solve, also we will start to work on the PB
solvers to improve performance when running these formulas
to achieve optimum results in bigger formulas.

REFERENCES

[1] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”
Journal of Computer, vol. 42, no. 1, pp. 15–20, Jan. 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the Clouds: A Berkeley View of Cloud Computing,” EECS
Department, University of California, Berkeley, Tech. Rep., 2009.

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A
Break in the Clouds: towards a Cloud Definition,” Journal of ACM

SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 50–
55, 2008.

[4] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server Consolidation
in Clouds through Gossiping,” in Proceedings of IEEE International

Symposium on a World of Wireless, Mobile and Multimedia Networks.
IEEE Computer Society, Jun. 2011, pp. 1–6.

[5] W. Vogels, “Beyond Server Consolidation,” Journal of ACM Queue,
vol. 6, no. 1, p. 20, Jan. 2008.

[6] T. C. Ferreto, M. a.S. Netto, R. N. Calheiros, and C. a.F. De Rose,
“Server Consolidation with Migration Control for Virtualized Data
Centers,” Journal of Future Generation Computer Systems, vol. 27,
no. 8, pp. 1027–1034, Oct. 2011.

[7] R. Harmon and N. Auseklis, “Sustainable IT Services: Assessing the
Impact of Green Computing Practices,” in Proceedings of International

Conference on Management of Engineering & Technology. IEEE
Computer Society, Aug. 2009, pp. 1707–1717.

[8] A. Corradi, M. Fanelli, and L. Foschini, “Increasing Cloud Power
Efficiency through Consolidation techniques,” in Proceeding of IEEE

Symposium on Computers and Communications. IEEE Computer
Society, Jun. 2011, pp. 129–134.

[9] R. Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Work-
loads,” in Proccedings of IEEE 3rd International Conference on Cloud

Computing. IEEE Computer Society, Jul. 2010, pp. 228 –235.

[10] B. C. Ribas, R. M. Suguimoto, R. A. M. no, F. Silva, L. de Bona, and
M. A. Castilho, “On modelling virtual machine consolidation to pseudo-
boolean constraints,” in Advances in Artificial Intelligence – IBERAMIA

2012, ser. Lecture Notes in Computer Science, J. Pavón, N. D. Duque-
Méndez, and R. Fuentes-Fernández, Eds., vol. 7637. Springer, 2012,
pp. 361–370.



TABLE II: Execution time per instance for Sat4j-PB solver
running against the previous formulation and PBFVMC. Time
Limit was set to 14400s and TLE represents when Time
Limit is Exceeded, when the result is bold means that the
optimum was found, when not means the solver could not
prove optimum and the value is the time of the best solution
found

Formula Previous PBFVMC

hw32-vm25p 249.897/7 191.912/7

hw32-vm50p 35.696/16 4.134/16

hw32-vm75p 23.628/25 772.657/24

hw32-vm85p 1175.103/29 159.86/28

hw32-vm90p 108.361/31 948.924/29

hw32-vm95p 3442.92/32 319.041/31

hw32-vm98p TLE 45.651/32

hw32-vm99p TLE 5566.491/32

hw64-vm25p 4248.893/17 8.541/16

hw64-vm50p 6477.271/33 200.261/33

hw64-vm75p 8784.933/50 8608.38/47

hw64-vm85p 603.393/59 490.656/55

hw64-vm90p 1272.89/62 869.421/58

hw64-vm95p TLE 679.719/62

hw64-vm98p TLE 4135.757/64

hw64-vm99p TLE 240.642/64

hw128-vm25p TLE 10319.859/29

hw128-vm50p 14661.134/75 4856.869/64

hw128-vm75p 16209.656/105 12538.628/98

hw128-vm85p 11203.456/122 1117.772/115

hw128-vm90p 13491.676/128 11295.761/117

hw128-vm95p TLE 65.916/128

hw256-vm25p TLE 12381.653/68

hw256-vm50p TLE 3576.626/136

hw256-vm75p TLE 11468.942/204

hw256-vm85p TLE 10537.747/230

hw256-vm90p TLE 2704.592/243

hw256-vm95p TLE 2003.068/255

hw256-vm98p TLE 7737.502/256

hw512-vm25p TLE 4471.005/140

hw512-vm50p TLE 5406.047/281

hw512-vm75p TLE 4378.66/408

hw512-vm85p TLE 4919.328/461

hw512-vm90p TLE 14426.6/487

hw512-vm95p TLE 6864.151/510

[11] J. P. Marques-Silva, I. Lynce, and S. Malik, Conflict-Driven Clause

Learning SAT Solvers, ser. Frontiers in Artificial Intelligence and
Applications. IOS Press, February 2009, vol. 185, ch. 4, pp. 131–
153.

[12] C. M. Li and F. Manyà, MaxSAT, Hard and Soft Constraints, ser.
Frontiers in Artificial Intelligence and Applications. IOS Press,
February 2009, vol. 185, ch. 19, pp. 613–631.

[13] O. Roussel and V. Manquinho, Pseudo-Boolean and Cardinality Con-

straints, ser. Frontiers in Artificial Intelligence and Applications. IOS
Press, February 2009, vol. 185, ch. 22, pp. 695–733.

[14] H. Umeno, M. C. Parayno, K. Teramoto, M. Kawano, H. Inamasu,
S. Enoki, M. Kiyama, T. Aoyama, and T. Fukunaga, “Performance Eval-
uation on Server Consolidation using Virtual Machines,” in Proceedings

of SICE-ICASE International Joint Conference. IEEE Computer
Society, 2006, pp. 2730–2734.

[15] S. Mehta and A. Neogi, “ReCon: A Tool to Recommend Dynamic
Server Consolidation in Multi-cluster Data Centers,” in Proceeding of

TABLE III: Execution time per instance for Sat4j-PB solver
to find a satisfiable assignment. Time Limit was set to 14400s

Formula Previous PBFVMC

hw32-vm25p 92.756 0.433

hw32-vm50p 35.643 0.542

hw32-vm75p 3.43 0.588

hw32-vm85p 4.516 0.911

hw32-vm90p 6.795 9.716

hw32-vm95p 3442.92 8.129

hw32-vm98p TLE 45.589

hw32-vm99p TLE 5566.28

hw64-vm25p 3118.029 0.706

hw64-vm50p 18.306 0.892

hw64-vm75p 50.687 1.15

hw64-vm85p 60.38 1.365

hw64-vm90p 121.006 1.423

hw64-vm95p TLE 7.512

hw64-vm98p TLE 4135.757

hw64-vm99p TLE 240.538

hw128-vm25p TLE 1.731

hw128-vm50p 4015.592 2.753

hw128-vm75p 5975.386 4.026

hw128-vm85p 7676.653 7.984

hw128-vm90p 13491.676 7.904

hw128-vm95p TLE 65.916

hw256-vm25p TLE 4.379

hw256-vm50p TLE 14.244

hw256-vm75p TLE 33.259

hw256-vm85p TLE 48.298

hw256-vm90p TLE 126.506

hw256-vm95p TLE 389.329

hw256-vm98p TLE 7737.502

hw512-vm25p TLE 28.436

hw512-vm50p TLE 162.289

hw512-vm75p TLE 508.322

hw512-vm85p TLE 287.437

hw512-vm90p TLE 5604.022

hw512-vm95p TLE 4222.892

IEEE Network Operations and Management Symposium 2008. IEEE
Computer Society, 2008, pp. 363–370.

[16] H. E. Dixon, M. L. Ginsberg, and A. J. Parkes, “Generalizing boolean
satisfiability i: Background and survey of existing work,” J. Artif. Intell.

Res. (JAIR), vol. 21, pp. 193–243, 2004.

[17] H. E. Dixon, M. L. Ginsberg, E. M. Luks, and A. J. Parkes, “Gen-
eralizing boolean satisfiability ii: Theory,” J. Artif. Intell. Res. (JAIR),
vol. 22, pp. 481–534, 2004.

[18] H. E. Dixon, M. L. Ginsberg, D. K. Hofer, E. M. Luks, and A. J. Parkes,
“Generalizing boolean satisfiability iii: Implementation,” J. Artif. Intell.

Res. (JAIR), vol. 23, pp. 441–531, 2005.

[19] D. Le Berre, “SAT4j: a Reasoning Engine in Java based on the
SATisfiability Problem,” http://www.sat4j.org.

[20] T. Achterberg, “Scip: Solving constraint integer programs,” Mathe-

matical Programming Computation, vol. 1, no. 1, pp. 1–41, 2009,
http://mpc.zib.de/index.php/MPC/article/view/4.

[21] V. Manquinho, “BSOLO: A Solver for Pseudo-Boolean Constraints,”
http://sat.inesc-id.pt/∼vmm/research/.

[22] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook

of Satisfiability, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009, vol. 185.


