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Abstract. Cloud Computing is a new paradigm of distributed computing that

offers virtualized resources and services over the Internet. To offer Infrastructu-

re-as-a-Service (IaaS) many Cloud providers uses a large data center which us-

age ranges 5% to 10% of capacity in average. In order to improve Cloud data

center management and resources usage a Virtual Machine (VM) consolidation

technique can be applied to increase workloads and save energy. Using VM con-

solidation, we introduce an artificial intelligence consolidation based in Pseudo-

Boolean (PB) Constraints to find a optimal consolidation. To evaluate our PB

consolidation approach we used the DInf-UFPR and Google Cluster scenario and

the formulas are solved with two state-of-the-art solvers.

1 Introduction

Cloud Computing is a new paradigm of distributed computing that offers virtualized

resources and services over the Internet [8, 1]. Using Cloud Computing it is possible

to offer a pool of easily usable and accessible virtualized resources. These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing also for

an optimum resource utilization. This pool of resources is typically exploited by a pay-

per-use model in which guarantees are offered by the Infrastructure Provider by means

of customized SLAs [17].

One of the service model offered by Clouds is Infrastructure-as-a-Service (IaaS)

in which virtualized resource are provided as virtual machine (VM). With VMs, users

obtain a personalized and isolated execution environment to execute applications. A

VM also uses virtualized resources such virtual CPU, virtual RAM, virtual network

and virtual storage devices.

Many Cloud providers use a large data center in order to offer IaaS. Data centers

contains a huge amount of physical resources (server, disks, wired networks). Unfortu-

nately, most of large data center usage ranges from 5% to 10% of capacity on average.

In order to maximize the resources utilization by virtualized resources, a IaaS Cloud

provider can apply server consolidation technique [12, 18, 5] for VM reallocation on

physical servers. This consolidation is also denoted as VM Consolidation.



A server consolidation can increase workloads on servers from 50% to 85% where

they can operate more energy efficiently [6] and, in some cases, a consolidation can

save 75% of energy [4]. Reallocating virtualized resources allow to shutdown physi-

cal servers, reducing cooling costs, headcount, hardware management and energy con-

sumption costs.

To maximize Cloud data center usage, an optimal VM consolidation has been topic

of research in Cloud Computing. There are works [12, 18, 5, 3] that uses Linear Pro-

gramming formulation or distributed algorithms to guarantee the optimal resource uti-

lization. Different from these approaches we introduce an artificial intelligence ap-

proach based on Pseudo-Boolean (PB) [14] formulation to solve the optimization prob-

lem. We perform experiments using DInf-UFPR datacenter and Google Cluster to eval-

uate our approach based on real scenarios.

In section 2 we present related works to consolidation in Clouds. Section 3 describes

the Pseudo-Boolean formulation. In section 4 we evaluate the proposed approach using

data from real scenario. Finally, in section 5 we present a conclusion and future works.

2 Related works

Advances in virtualization technology allowed migration of VMs or entire virtual exe-

cution environment across physical resources. It also allowed a VM consolidation which

has been investigated with different aspects [16, 4, 13] such performance of VM, energy

consumption, costs of resource and costs of migration. Optimal VM consolidation has

been explored and solved using Linear Programming formulation [5, 3] and Distributed

Algorithms [12] approaches.

Marzolla et al. [12] presents a gossip-based algorithm called V-Man. Each physical

server (host) run V-Man with an Active and Passive threads. Active threads request a

new allocation to each neighbor sending to them the number of VMs running. The

Passive thread receives the number of VMs, calculate and decide if current node will

pull or push the VMs to requested node. The algorithm iterate and quickly converge to

an optimal consolidation, maximizing the number of idle hosts.

Ferreto et. al. [5] presents a Linear Programming formulation and add constraints to

control VM migration on VM consolidation process. The migration control constraints

uses CPU and memory to avoid worst performance when migration occurs.

Bossche et. al. [3] propose and analyze a Binary Integer Programming (BIP) formu-

lation of cost-optimal computation to schedule VMs in Hydrid Clouds. The formulation

uses CPU and memory constraints and the optimization is solved by Linear Program-

ming.

Different from above approaches, we introduce an artificial intelligence solution

based on Pseudo-Boolean formulation to solve the problem of optimal VM consolida-

tion.

3 Pseudo-Boolean Optimization

A Pseudo-Boolean function in a straightforward definition is a function that maps Boolean

values to a real number. The term pseudo-Boolean is given to these functions that



are not Boolean but remains very close to Boolean functions [11, 9, 14]. In a Pseudo-

Boolean (PB) formula, variables have Boolean domains and constraints, know as PB

constraints [14], are linear inequalities with integral coefficients. In PB Optimization, a

cost function is added to a PB formula.

PB functions are a very rich subject of study since numerous problems can be ex-

pressed as the problem of optimizing the value of a PB function. PB constraints offer

a more expressive and natural way to express constraints than clauses and yet, this for-

malism remains close enough to the Satisfiability (SAT) [11, 9] problem to benefit from

the recent advances in SAT solving.

Simultaneously, PB solvers benefit from the huge experience in Integer Linear Pro-

gramming (ILP) and, more specifically, 0-1 programming. This is particularly true when

optimization problems are considered. Inference rules allow to solve problems polyno-

mially when encoded with PB constraints while resolution of the problem encoded with

clauses requires an exponential number of steps. PB constraints appear as a compromise

between the expressive power of the formalism used to represent a problem and the dif-

ficulty to solve the problem in that formalism [14].

In this work we use PB constraints instead of raw Boolean because each Boolean

variable has an integer coefficient that maps the structure of the servers and VMs in

terms of processing power (CPU) and memory (RAM). With this construction there is

no need to transform the formula into a CNF since PB can represent all that is necessary.

We take advantage of PB optimization [14] that are implemented on PB solvers,

where we create one more PB constraint. This constraint does not have the inequality

to express the upper bound of the constraint but is set as an objective constraint to the

solver to find the minimal value that this constraint can assume while respecting all

other constraints.

A detailed description of modern SAT solver, maximum satisfiability and Pseudo-

Boolean optimization can be found, respectively in [11, 9, 14].

3.1 PB formulation to Optimal VM consolidation

The goal of our problem is to deploy K VMs {vm1 . . . vmK} inside N hardwares

{hw1 . . . hwN} while minimizing the total number of active hardwares. Each VM vmi

has an associated needs such as number of VCPU and amount of VRAM needed while

each physical hardware hwj has an amount of available resources, number of CPU and

available RAM.

In order to create the PB Constraints each hardware consists of two variables, one

that relates hwi to the amount of RAM hwram
i and one that relates to the amount of

CPU hw
proc
i . Per hardware, a VM has 2 variables, one to relate the VM vmj required

amount of VRAM vmram
j to the hardware hwi amount of RAM hwram

i , denoted as

vm
ram·hwi

j . The another variable relate the required VCPU vm
proc
j to the amount of

CPU available hw
proc
i , denoted as vm

proc·hwi

j . The total amount of VM variables is

2×N variables.

Our main objective is to minimize the amount of active hardware. This constraint

is defined in 1. Each hwi is a Boolean variable that represents one hardware that, when

True, represents that hwi is powered on and powered off otherwise.



minimize :

N
∑

i=1

hwi (1)

To guarantee that the necessary amount of hardware is active we include two more

constraints that implies that the amount of usable RAM and CPU must be equal or

greater than the sum of resources needed by VM. These constraints are defined at 2 and

3, respectively.

N
∑

i=1

RAMhwi
· hwram

i ≥
K
∑

j=1

RAMvmj
· vmram

j (2)

N
∑

i=1

PROChwi
· hwproc

i ≥
K
∑

j=1

PROCvmj
· vmproc

j (3)

To limit the upper bound of hardwares, we add two constraints per host that limit:

available RAM per hardware: This constraint dictates that the sum of needed ram of

virtual machines must not exceed the total amount of ram available on the hardware,

and it is illustrated in constraint 4;

available CPU per hardware: This constraint dictates that the sum of VCPU must not

exceed available CPU, and it is illustrated in constraint 5.

∀ hw
ram
i ∈ hw

ram
N

(

K
∑

j=1

RAMvmj
· vmram·hwi

j ≤ RAMhwi

)

(4)

∀ hw
proc
i ∈ hw

proc
N

(

K
∑

j=1

PROCvmj
· vmproc·hwi

j ≤ PROChwi

)

(5)

Finally we add one constraint per VM to guarantees that the VM is running in

exactly one hardware. These constraints can be seen on constraint 6.

∀ vmi ∈ vmK

(

N
∑

j=1

vm
proc·hwj

i · vm
ram·hwj

i · hwproc
j · hwram

j = 1

)

(6)

With this model we have (2 × N + 2 × N ×K) variables and (2 + 2 × N +K)
constraints with one more constraint to minimize in our PB formula. It is possible to get

these amounts because it is a non-linear formula since constraint 6 has a sum of four

multiplication.

Note that additional constraints, such as requiring minimal latency between VM,

minimal guarantee of bandwidth, migration costs and others will add additional com-

plexity to the problem and are left for future works.



4 Experiments

For the implementation and evaluation of the PB Constraints, we wrote a simple pro-

gram that reads the amount of physical hardware followed by its amount of RAM and

CPU, the amount of VM and its requirements of virtual memory (VRAM) and virtual

processing power (VCPU), and solved the formula using open source PB solver/opti-

mizer Sat4j-PB [7] and BSOLO [10].

We use two workloads to perform our PB consolidation approach. The first is the

datacenter of Informatic Departament of Federal University of Paraná (DInf-UFPR),

which are used to deploy VMs to offer services and execution environments for experi-

ments of researches and students. The second is the Google Cluster Data project which

has traces about machines and tasks running in Google servers. Tasks have resource

requirements as well as VMs.

To evaluate both workloads we used the First-Fit and Round-Robin approaches to

allocate the VMs on resources to compare with our PB optimal solution. With Round-

Robin we expect to find the worst case and with First-Fit a medium case of consolida-

tion.

We also used a subset of workloads to see the progress on the use of different amount

of VM or tasks. A subset of workload is the larger subset of VMs or tasks which sum

of VCPU requirements does not exceed σ percent of sum of physical servers CPU

capacities. In this experiment we assume σ equals to 25%, 50% and 75%.

4.1 Better Use of DInf-UFPR datacenter

In DInf-UFPR Datacenter we separated a set of physical server and VMs totalizing 9
servers and 22 VMs. The configuration are as follows on table 1. The number of CPU

and VCPU is given by the amount of processing cores and RAM and VRAM is given

by amount of memory in Gigabytes.

To evaluate our approach in this scenario, we took the subset of VMs present in

table 2. The table shows information about subsets with respective sum of VCPU, sum

of VRAM and amount of VMs.

As a result, table 3 show the execution time, in seconds, of PB solvers for current

scenario with above subsets workload. Table also shows respective amount of variables

and amount of PB constraints generated from formula. Figure 1 presents the number of

active servers for each subset. Each subset was executed using Round-Robin, First-Fit

and PB consolidation with Sat4j-PB and BSOLO solver.

The results obtained in DInf-UFPR scenario show that PB optimal consolidation has

a better result of First-fit, but it is very close to optimal due to little amount of servers.

As expected, Round-Robin presents the worst-case of consolidation.

4.2 Google Cluster Data Project

Google Cluster Data 4 is a Google project to intend for the distribution of data about

workloads running on Google Cluster. The workloads contains data traces about 12k

4 http://code.google.com/p/googleclusterdata/



Host RAM CPU

hw1 30 4

hw2 18 4

hw3 10 8

hw6 10 8

hw5 30 4

prd3b 125 32

prd3d 125 32

prd3c 125 32

tesla1 62 16

SUM 535 140

(a) Hardware de-

scription.

VM VRAM VCPU VM VRAM CPU

planetmon 12 4 db 2 1

vc3-blanche 8 4 devel 4 2

alt 10 8 salinas 5 2

dalmore 10 8 vc3-colombard 8 2

mumm 10 8 vc3-educacional 2 2

priorat 5 8 vc3-newcastle 4 2

talisker 32 8 vc3-qef1 2 2

bowmore 20 12 vc3-qef2 2 2

alt-marcadle 80 16 vc3-qef3 2 2

alt-murphy 93 24 vc3-qef4 2 2

caporal 18 4 alt-guinness 120 32

SUM 451 155

(b) VMs desciptions.

Table 1: Hardwares and VM description for DInf-UFPR scenario.

Workload Percent
∑

VRAM
∑

VCPU Amount of VMs

25% 51 23 11

50% 81 39 14

75% 138 71 18

Table 2: Table of workload subsets with σ equals to 25%, 50% and 75% and respectives

sum of VRAM, VCPU and amount of VMs for DInf-UFPR scenario.

Formula Variables Constraints BSOLO Sat4j-PB

hw9-vm25p 108 25 0.004 0.101

hw9-vm50p 198 30 0.004 0.109

hw9-vm75p 288 35 0.004 0.118

Table 3: Variables and constraints generated and execution time for DInf-UFPR sce-

nario using BSOLO and Sat4j-PB solvers.

machines describing events and resource capacity of each server. The traces also de-

scribes around 132k tasks workloads with respective resource requirements.

Due to the long period to perform PB consolidation using all 12k machines and

132k workloads we selected five subset of machines. The size of each subset are 32, 64,

128, 256, 512 machines. For each size of subset machines, we used the above subset

of workload to perform experiments. Table 4 shows the amount of resources used to

evaluate PB consolidation and others allocation approaches. Values of CPU and RAM

are normalized in a scale relative to the largest capacity of the resource on any machine

in the period of trace. The value of the largest capacity is 1.0.



Fig. 1: Number of active hardware for each approach for DInf-UFPR scenario.

#Machines RAM CPU Workload %
∑

VRAM
∑

VCPU #Tasks

32 14.9813 17.0000 25% 3.7375 4.3475 98

32 14.9813 17.0000 50% 5.7048 8.5640 173

32 14.9813 17.0000 75% 9.5204 12.7674 278

64 32.2117 34.5000 25% 5.7281 8.6389 174

64 32.2117 34.5000 50% 13.8382 17.2724 371

64 32.2117 34.5000 75% 19.3733 25.8826 559

128 61.8284 68.0000 25% 13.5025 17.0473 368

128 61.8284 68.0000 50% 26.3261 34.3367 713

128 61.8284 68.0000 75% 39.0425 51.0215 1048

256 121.5035 134.5000 25% 26.2943 33.9555 712

256 121.5035 134.5000 50% 49.0585 67.2507 1407

256 121.5035 134.5000 75% 75.6842 10.08777 2119

512 246.7420 275.2500 25% 50.9854 68.8945 1432

512 246.7420 275.2500 50% 100.1324 137.8664 2771

512 246.7420 275.2500 75% 206.4426 148.0852 4035

Table 4: Table of workload subsets for each subset of machines. The workload has a

σ equals to 25%, 50% and 75% and respective sum of VRAM, VCPU and amount of

tasks for Google Cluster scenario.

As a result, table 5 shows time results for the set of formulas explained above. For

each instance was given a time limit of 7200 seconds. When the solver run out of time

limit and did not found any solution it is show a Time Limit Exceeded (TLE). If the

solver caught a Segmentation Fault signal a Runtime Error (RTE) is thrown as a result.



Formula Variables Constraints BSOLO Sat4j-PB

hw32-vm25p 6336 164 7242.75 305.277

hw32-vm50p 11136 239 7198.01 7204.971

hw32-vm75p 17856 344 7237.44 6417.293

hw64-vm25p 22400 304 7198.02 7227.192

hw64-vm50p 47616 501 7198.02 7243.419

hw64-vm75p 71680 689 7198.19 7243.385

hw128-vm25p 94464 626 TLE 7244.51

hw128-vm50p 182784 971 TLE 7244.46

hw128-vm75p 268544 1306 TLE 7243.678

hw256-vm25p 365056 1226 TLE TLE

hw256-vm50p 720896 1921 RTE TLE

hw256-vm75p 1085440 2633 RTE TLE

hw512-vm25p 1467392 2458 RTE TLE

hw512-vm50p 2838528 3797 RTE TLE

hw512-vm75p 4132864 5061 RTE TLE

Table 5: Execution time per instance for BSOLO and Sat4j-PB solver. Time Limit was

set to 7200s and TLE represents when Time Limit was Exceeded and RTE is for Run-

Time Error.

Figures 2a, 2b, and 2c respectively shows the result of amount actives machines for

32, 64, 128 and 256 subset of machines. For each subset, we perform the Round-Robin,

First-Fit and PB consolidation approaches using Sat4j-PB and BSOLO solvers.

Unfortunately none of the tested solvers were able to find a satisfiable assignment

for the larger formulas such subsets of 512 machines and 256 machines and only two

instances reached optimum objective assignment. A non optimum solution can be easily

identified in test case of 128 machines with 50% load where in figure 2c the First-

Fit algorithm were able to optimize better than the PB Solver. Table 5 shows that the

biggest formulas tested solver were not even able to find one satisfiable assignment to

the formula, as can be identified as RTE and TLE. The RTE has many possibilities of

errors caused in the solver execution, and it discussion is out of the scope of this work.

The TLE means that it took too much time to find any satisfiable assignment with 7200
seconds time limit.

With the present result, we can confirm the VM consolidation by PB formulation

approach is a valid formulation. When the Cloud has only a few resources, both physical

and virtual, state-of-the-art solvers can prove optimal consolidation very fast. Within

larger instances, PB solvers could not find the optimal, and in most of the cases they do

not found any consolidation.

5 Conclusion

This paper presented a VM consolidation model using a artificial intelligence based on

Pseudo-Boolean (PB) Constraints. A PB Constraints can be used to optimize costs, i.e



(a) Result for 32 machines. (b) Result for 64 machines.

(c) Result for 128 machines.

Fig. 2: Number of active machines using Round-Robin, First-Fit and PB consolidation

with Sat4J-PB and BSOLO solvers for Google Cluster scenario.

minimizing the amount of active hardware. With a PB approach it is easily add extra

restrictions to VM consolidation that would not be easily done with a First-fit or Round-

Robin algorithms.

Unfortunately, follow experimental results, PB solvers were not able to solve the

formulas of a huge test scenario such as Google Cluster. Also the benefit of running

time was not as good as others approaches such First-fit algorithm.

Despite the fact tested solvers were not powerful enough to complete all formulas in

a practical time we can use these formulas as a good benchmark to improve PB solvers.

We are interested in going on investigating some important research direction. First,

we want to extend our solution and implement it inside a Cloud Management System

(i.e. OpenNebula [15]) as an optimizer module. After we are interested to add some

important restrictions such as network dependency of VMs and create classes of VMs

to make better use of network interfaces of hosts.
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