ARMageddon: Cache Attacks on Mobile Devices

Acadêmico: Eduardo Alberto Schmoller

Autores: Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice e Stefan Mangard. **Graz University of Technology, Austria, 25th USENIX Security Symposium**

Pato Branco, 22 de Junho de 2017

Objetivos

Demonstrar técnicas de ataque à memórias cache e a aplicação dessas técnicas em smartphones android com processadores ARM.

Obtenção de dados de aplicativos sem a necessidade de permissões de superusuário (*root*).

Método de comunicação entre processos.

Ataque a algoritmos criptográficos, detecção de toques, arastos na tela e tamanho de palavras digitadas.

Cache - Arm

- Velocidade de acesso.
- Politica de Substituição
 - LRU
 - Pseudo-Random
- Cache Inclusivo ou Não-Inclusivo
- Cache L2 Compartilhado → Core pode alterar conteúdo
- Mapeamento memória principal → Cache

Desafios

- 1. Cache L2 não inclusivo em dispositivos ARM.
- 2. Multiplas CPU não compartilham o Cache.
- 3. CPUs ARM sem suporte a instrução *flush*.
- 4. Pseudo-Ramdom como politica de substituição cache.
- 5. Obtenção de medidas de tempo com alta precisão.

Técnicas

• Prime+Probe

• Flush+Reload

• Evict+Reload

• Flush+Flush

Dispositivos Utilizados

Table 1: Test devices used in this paper.

Device	SoC	CPU (cores)	L1 caches	L2 cache	Inclusiveness
OnePlus	Qualcomm	Krait 400 (2)	2×16 KB,	2 048 KB,	non-inclusive
One	Snapdragon 801	2.5 GHz	4-way, 64 sets	8-way, 2048 sets	
Alcatel One	Qualcomm	Cortex-A53 (4)	4× 32 KB,	512 KB,	instruction-inclusive,
Touch Pop 2	Snapdragon 410	1.2 GHz	4-way, 128 sets	16-way, 512 sets	data-non-inclusive
		Cortex-A53 (4)	4× 32 KB,	256 KB,	instruction-inclusive,
Samsung	Samsung Exynos	1.5 GHz	4-way, 128 sets	16-way, 256 sets	data-non-inclusive
Galaxy S6	7 Octa 7420	Cortex-A57 (4)	$4 \times 32 \text{ KB}$,	2 048 KB,	instruction-non-inclusive,
		2.1 GHz	2-way, 256 sets	16-way, 2 048 sets	data-inclusive

Ataque Cache

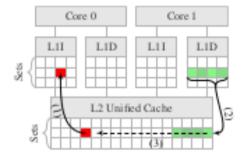


Figure 1: Cross-core instruction cache eviction through data accesses.

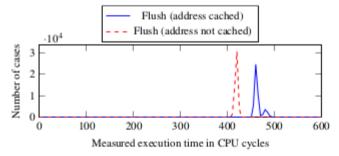


Figure 3: Histograms of the execution time of the flush operation on cached and not cached addresses measured on the Samsung Galaxy S6.

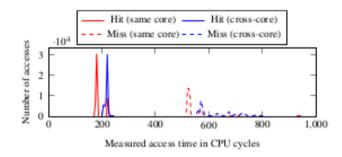


Figure 2: Histograms of cache hits and cache misses measured same-core and cross-core on the OnePlus One.

Fast Cache Eviction

Mais de 4200 combinações testadas.

Table 2: Different eviction strategies on the Krait 400.

N	A	D	Cycles	Eviction rate
-	-	-	549	100.00%
11	2	2	1 578	100.00%
12	1	3	2 094	100.00%
13	1	5	2213	100.00%
16	1	1	3 0 2 6	100.00%
24	1	1	4371	100.00%
13	1	2	2 3 7 2	99.58%
11	1	3	1 608	80.94%
11	4	1	1 948	58.93%
10	2	2	1 275	51.12%

Table 3: Different eviction strategies on the Cortex-A53.

N	A	D	Cycles	Eviction rate
	-	-	767	100.00%
23	2	5	6209	100.00%
23	4	6	16912	100.00%
22	1	6	5 101	99.99%
21	1	6	4 2 7 5	99.93%
20	4	6	13 265	99.44%
800	1	1	142 876	99.10%
200	1	1	33 110	96.04%
100	1	1	15 493	89.77%
48	1	1	6517	70.78%

Medidas de Tempo

- Unprivileged syscall → PERF_COUNT_HW_CPU_CYCLES
- POSIX function → clock_gettime()
- Dedicated thread timer → Contador incrementando uma variável global.

Medidas de Tempo

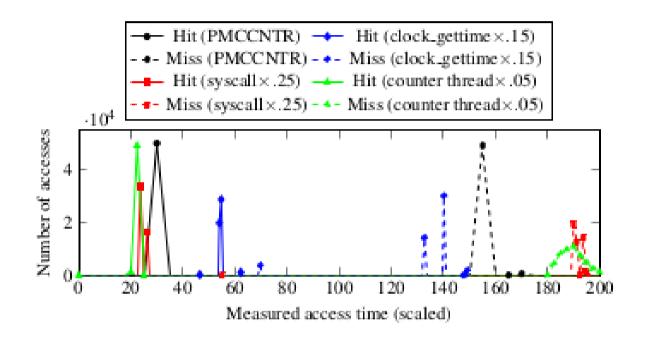


Figure 4: Histogram of cross-core cache hits/misses on the Alcatel One Touch Pop 2 using different methods. X-values are scaled for visual representation.

High Performance Covert Channels

Mecanismo de comunicação entre dois processos sem utilizar recursos do SO.

- 1. Definir (n + s + c) endereços em alguma biblioteca.
- 2. Cada endereço representa um bit na comunicação.
- 3. Medida do tempo de acesso, se estiver em cache um *bit* com valor 1 foi transmitido.

High Performance Covert Channels

Table 4: Comparison of covert channels on Android.

Work	Type	Bandwidth [bps]	Error rate
Ours (Samsung Galaxy S6)	Flush+Reload, cross-core	1 140 650	1.10%
Ours (Samsung Galaxy S6)	Flush+Reload, cross-CPU	257 5 0 9	1.83%
Ours (Samsung Galaxy S6)	Flush+Flush, cross-core	178 292	0.48%
Ours (Alcatel One Touch Pop 2)	Evict+Reload, cross-core	13618	3.79%
Ours (OnePlus One)	Evict+Reload, cross-core	12537	5.00%
Marforio et al. [36]	Type of Intents	4300	_
Marforio et al. [36]	UNIX socket discovery	2600	_
Schlegel et al. [48]	File locks	685	_
Schlegel et al. [48]	Volume settings	150	_
Schlegel et al. [48]	Vibration settings	87	_

Attacking a Shared Library

Mapeamento de um mesmo endereço de memória em varios espaços de memória cache.

Cada endereço da biblioteca representa uma ação.

Android < 4.4 **Dalvik VM**, sem bibliotecas compartilhadas.

Android > 4.4 **ART**, Binários compilados são compartilhados.

Attacking User Input on Smartphones

Mapear bibliotecas compartilhadas. Ex. *libinput.so*

Gerar eventos de entradas (*key, longpress, tap, swipe, text*) e medir o tempo de resposta de determindos endereços.

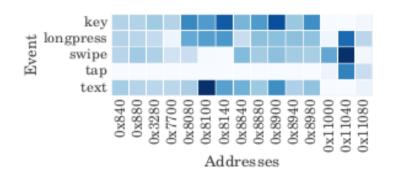


Figure 5: Cache template matrix for libinput.so.

Attacking User Input on Smartphones

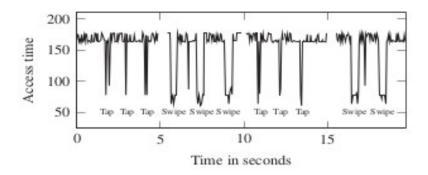


Figure 6: Monitoring address 0x11040 of libinput.so on the Alcatel One Touch Pop 2 reveals taps and swipes.

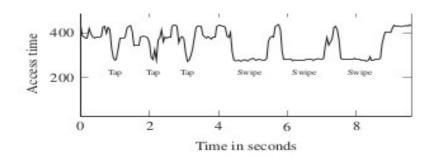


Figure 7: Monitoring address 0xDC5C of libinput.so on the Samsung Galaxy S6 reveals tap and swipe events.

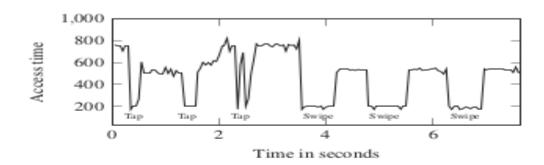


Figure 8: Monitoring address 0xBFF4 of libinput.so on the OnePlus One reveals tap and swipe events.

Attacking ART Binaries

ART é pré-compilado diferente do Java VM.

Mapeamento do ART do teclado AOSP para detecção do tamanho de palavras.

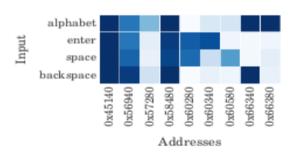


Figure 9: Cache template matrix for the default AOSP keyboard.

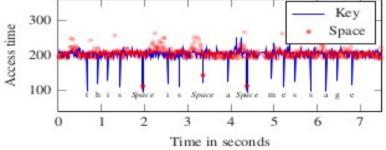


Figure 10: Evict+Reload on 2 addresses in custpack@ app@withoutlibs@LatinIME.apk@classes.dex on the Alcatel One Touch Pop 2 while entering the sentence "this is a message".

ART Binaries / Shared Library

Permite que aplicativos nocivos obter dados do usuário. GPS, bluetooth, audio, câmera, NFC, WEB, sensores em geral.

Sem necessitar de permissão de superusuário aplicativo consegue mapear e salvar qualquer atividade.

Websites rodando JavaScript conseguem acessar essas informações

Attack on Cryptographic Algorithms

Ataque ao AES T-Table, Bouncy Castle, OpenSSL < 1.0.1

AES T-Table contêm valores pré computados de transformações, permitindo criptografias apenas com XOR: $si = pi \oplus ki$

Sabendo pi (valor a ser criptografado) e o endereço da tabela usado descobre-se a chave usada: $ki = si \oplus pi$

Monitorando apenas 1 endereço a cada criptografia, em 3207 processos.

Medidas preventivas

- Restringir o acesso a /proc/self/pagemap
- Restringir o acesso a /proc/pid/pagemap
- Restringir o acesso a /proc/pid/maps
- Acesso ao ART e dados de todos os aplicativos /data/dalvik-cache/
- Utilizar istruções AES em hardware para criptografia.
- Março de 2016 Google limita o acesso aos diretórios /proc/pid/pagemap

Conclusão

Trabalho demonstrou possibilidade e brechas na arquitetura ARM.

Alta precisão em reconhecer taps e swipes na tela.

Demostrado um método eficaz para ataques em soluções de criptografias.

Referências

- GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript. In DIMVA'16 (2016).
- GRUSS , D., MAURICE , C., WAGNER , K., AND MANGARD , S. Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA'16 (2016).
- LIPP, D., GRUSS, D., SPREITZER, R., MAURICE, C., MANGARD, S. ARMageddon: Cache Attacks on Mobile Devices. In 25th USENIX Security Symposium.
- OSVIK, D., SHAMIR, A., TROM, E. Cache Attacks and Countermeasures: The Case of AES. In CT-RSA 2006, pp. 1-20.

ARMageddon: Cache Attacks on Mobile Devices

Acadêmico: Eduardo Alberto Schmoller

Autores: Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice e Stefan Mangard. **Graz University of Technology, Austria, 25th USENIX Security Symposium**

Pato Branco, 22 de Junho de 2017